| Sample, and date of manufacture. | Date of, and original assay. | $\begin{aligned} & \text { Assay } \\ & 7 / 5 / 17 . \end{aligned}$ | Loss percent. | Assay Loss percent 7/18. from original |  | t. Retharks. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{A}^{1}$. |  | . . . | .. | 0.444 | . | Boric acid formula, slightly alkaline to phenclphthalein. |
| $\mathrm{A}^{2}$. | 0.706 | 0.614 | 13\% | 0.433 | $39 \%$ | Boric acid formula, cork |
| 11/16 | 1/5/17 |  |  |  |  | good, bleached. |
| $\mathrm{A}^{3}$. | 0.54 | $\ldots$ | $\cdots$ | 0.349 | $36.4 \%$ | Boric acid formula, diluted |
| 11/16 | 1/5/17 |  |  |  |  | to be about $0.5 \%$, amber g. s. b. |
| B.. | 0.515 | 0.49 | 5\% | 0.405 | 21.4\% | Dakin's, corkgood, |
| 1/5/17 | 1/5/17 |  |  |  |  | bleached. |
| C. | 0.506 | 0.428 | $15.4 \%$ | 0.273 | $46.0 \%$ | Dakin's, cork porous and |
| 3/12/17 | 3/12/17 |  |  |  |  | decidedly bleached. |
| D.. | 0.513 | 0.465 | 9.4\% | 0.322 | $37.0 \%$ | Dakin's, cork very poer, |
| 3/22/17 | 3/22/17 |  |  |  |  | bleached. |
| E... | 0.462 | 0.462 | 0.0\% | (Samp | le lost) | Dakin's, io days, hot |
| 6/25/17 | 6/25/17 |  |  |  |  | weather. No loss. |
| F. |  | 0.53 | (Sample | e lost) | . | Dakin's, fresh lot. |
| 7/5/17 |  |  |  |  |  |  |
| G ${ }^{1}$. | $\ldots$ | . . | 0 | $0.348 \times$ | 10 $55 \%$ | Commercial brand, assay as |
| (Rec'd 3/16) |  |  |  |  |  | per label, $7.7 \% \mathrm{NaOCl}$. |
| G2...... |  | . . | - 0 | 0. $500 \times$ |  | Commercial brand, received |
| (Rec'd 7/18) |  |  |  |  |  | a few days before assaying, assay as per label, $4.05 \% \mathrm{NaOCl}$. |

Ordinary care only was exercised with stoppers, as some corks were better than others. It will be seen from the table that where the sample was well stoppered it did not fall below the lower limit of variation permissible, in six months.

The commercial, so-called stabilized, product lost strength, apparently, at about the same rate as Dakin's Solution, Daufresne formula.

## THE USE OF LOGARITHMS AND ANTILOGARITHMS IN PHARMACEUTICAL ASSAYING.*

BY H. L. THOMPSON.
It has been my experience in teaching the subject of pharmaceutical assaying that one of the most difficult, tedious and nerve-racking parts of it is the performance of the mathematical calculations involved. As a result, I have attempted to instruct my students in the use of logarithms and antilogarithms, and after six years of such performance, there have resulted the following facts:
ist. As far as accuracy, the results obtained by using logarithms and antilogarithms is $0.01 \%$, and that is considerably beyond the average accuracy in practice.

2nd. The time and labor saved by the use of logarithms and antilogarithms is about one-tenth or less than that used by the method of ratio and proportion, and the multiplication and long division of three or four decimal figures out to the third or fourth decimal place as required in determining strengths of drugs, chemicals and their preparations.

[^0]3rd. The continual use of logarithms and antilogarithms has brought forth five general formulas, two for standardizing volumetric solutions, two for volumetric assay, and one for gravimetric and electrolytic assay.

Just what are logarithms and antilogarithms can not be explained in a better way than to first define a logarithm and an antilogarithm, show a logarithm table and an antilogarithm table, and then explain their use.
(If one is fully acquainted with the use of logarithms and antilogarithms, the following paragraphs may be omitted, and the use of the general standardization formulas and general assay formulas may be considered. See paragraph, Explanation of terms used in the formulas.)

## LOGARITHM OF A NUMBER.

Let " $a$ " be a certain fixed number, " $n$ " any other number, and let " $x$ " represent the exponent of " $a$ " required to produce " $n$." Then " $x$ " is the logarithm of " $n$ " to the base " $a$."

As equations: if $a^{x}=n$; then $x=\log _{a} n$.
Hereafter are given some very simple tables of logarithms.

| No. | Logarithm <br> Buse $=2$. | n. Logı | n. | n. |
| :--- | :---: | :---: | :---: | :---: |

LAWS OF OPERATIONS WITH LOGARITHMS.
Since a logarithm is an exponent, the laws of operation for logarithms are the same as those for exponents.

Let " $x$ " be the logarithm of " $m$," " $y$ ' that of " $n$;" the base being " $a$."
Then $\quad \log _{a} m=x$; or $a^{x}=m$; $\log _{a} n=y$; or $a^{y}=n$.
Hence $m n=a^{x+y}$ and $m / n=a^{x-y}$;
or $\quad \log _{a} m n=x+y=\log _{a} m+\log _{a} n$;
and $\quad \log _{a} m / n=x-y=\log _{a} m-\log _{a} n$.
We have therefore the rules:
I. The logarithm of a product equals the sum of the logarithm of the factors.
II. The logarithm of a fraction equals the logarithm of the numerator minus the logarithm of the denominator.

Also, if as before,

$$
\log _{a} m=x \text {, so that } m=a^{x} \text {; }
$$

then, if $p$ and $q$ be any real numbers

$$
\mathrm{m}^{\mathrm{p}}=\mathrm{a}^{p \mathrm{x}} \text { and } \mathrm{q} / \mathrm{m}=\mathrm{a}^{\mathrm{x} / \mathrm{q}}
$$

Hence $\log _{a} m^{p}=p x=p \log _{a} m$;
and $\quad \log _{a} m=x / q=1 / q \log _{a} m$.
There are therefore two additional rules:
III. The logarithm of any power of a number equals the exponent of the power times the logarithm of the number.
IV. The logarithm of any root of number equals the logarithms of the number divided by the index of the root.
(Rule ILI contains Rule IV, since the power in question may be fractional.)

The following facts regarding logarithms should also be carefully noted:
(a) In any system the logarithm of the base is 1 ; for $a^{1}=a$. Therefore $\log _{a} a_{1}$.
(b) In any system the logarithm of I is o ; for $\mathrm{a}^{\circ}=\mathrm{I}$. Therefore $\log _{\mathrm{a}} \mathrm{I}=0$.
(c) In any system whose base is greater than unity, the logarithm of $o$ is $-\infty$. For if $a^{x}=m$, and $a>1$, then if $x$ is a large negative number $m$ will be small. As $x$ increases indefinitely, always being n negative, $m$ approaches zero. That is, $a-\infty=0$; if a $>1$. Therefore $\log o=-\infty$.
(d) A negative number has no (real) logarithm, the base being positive.
(e) As a number varies from o to $+\infty$, its logarithm varies from $-\infty$ to $+\infty$, the base being greater than I .

When the number is greater than I , its logarithm is positive, and when the number is less than 1 , its logarithm is negative.

A photo of Logarithms of Numbers and Antilogarithms accompanies this article.

## EXPLANATION OF THE TABLES AND THEIR USE.

Logarithms of Numbers.-This table gives the decimal part, or mantissa, of the logarithms of every positive number containing not more than three significant figures. The mantissas of the logarithms of numbers containing more than three significant figures are to be obtained by interpolation or the use of the proportional parts. The integral part, or characteristics, of the logarithm must be supplied by the computer, according to the position of the decimal point in the number.

## RULES FOR CHARACTERISTICS.

(a) When a number has " $n$ " significant figures to the left of the decimal point, the characteristic of its logarithm is $\mathbf{n}-1$.
(b) When the number is a decimal with " $n$ " ciphers between the decimal point and the first digit which is not zero, the characteristic of its logarithm is $9-n$, and - 10 must be supplied to complete the logarithm.

The reason for these rules will become evident when we consider an example.
Find $\log 63 \mathrm{I}$. In the table find 63 in the left hand column and run across the page horizontally to the column headed one. There we find that the mantissa of $\log 631=0.8000$.

Now 631 lies between 100 and $1000, i$. e., between $10^{2}$ and $10^{2}$.
Hence, by definition of a logarithm, $\log 631$ must lie between 2 and 3 .
Therefore the characteristic is 2 , and $\log 631=2.8000$.
This, of course, is not the exact logarithm of 631 , but only its value to four decimal places.
Writing the last equation in exponential form, we have
$631=10^{2.8000}$.
Multiplying both sides by $10,6310=10 \times 10^{2.8000}=10^{3.8000}$
Hence, $\log 63$ го $=3.8000$.
Multiplying again by $10,63100=10 \times 10^{3.8000}=10^{4.8000}$. Hence $\log 63100=$ 4.8000. Therefore, where a number is multiplied by 10 , the characteristic of its logarithm is increased by 1 ; the mantissa remains unchanged.

Dividing the above equations successively by ro, we obtain

$$
\begin{aligned}
63 . \mathrm{I} & =10^{2.8000}+10=10^{1.8000} \\
6.3 \mathrm{I} & =10^{1.8000}+10=10^{08000} \\
0.63 \mathrm{I} & =10^{0.8000}+10=10^{0.8000-1} \\
0.063 \mathrm{I} & =10^{0.8000-1}+10=10^{0.8000-2} \\
0.0063 \mathrm{I} & =10^{0.8000-2}+10=10^{08000-3} \text { and so on. }
\end{aligned}
$$

As logarithmic equations these are:

$$
\begin{aligned}
\log 63.1 & =1.8000 \\
6.31 & =0.8000 \\
0.631 & =0.8000-1=9.8000-10 \\
0.0631 & =0.8000-2=8.8000-10 \\
0.00631 & =0.8000-3=7.8000-10, \text { and so on. }
\end{aligned}
$$

The second form of the lst three equations is used for convenience in computations; it is in accordance with Rule $b$.


LOCARTHES OF NUMEERS



To 'discuss kules $a$ and $b$ more generally, let " $m$ '" be any number. Then by the definition of a logarithm, when

| m lies between |  |  |
| :---: | :---: | :---: |
| (1) | 1 and 10 | log lies between |
| (2) | 10 and 100 | and I |
| (3) | 100 and 1000 | 2 and 3 |
| (4) 1000 and 10000 | 3 and 4 , and so on. |  |

Therefore, when ' $m$ ', has
(1) 1 digit to the left of the decimal point, $\log m=0+\ldots$;
(2) 2 digits to the left of the decimal point, $\log m=1+\ldots$;
(3) 3 digits to the left of the decimal point, $\log m=2+\ldots$;
(4) 4 digits to the left of the decimal point, $\log m=3+\ldots$; and so on.

Hence Rule $a$.
In the case of decimal numbers,
when $m$ lies between
(I) 1.0 and $O . I$
(2) O.I and o.OI
(3) 0.01 and 0.001
(4) 0.001 and $0.0001 \quad-3$ and -4 and so on.

That is, when ' $m$ ' is a decimal number in which
(1) no cipher follows the decimal point, $\log m=9 \pm \ldots-$ ı;
(2) I cipher follows the decimal point, $\log m=8+\ldots \ldots$ ı;
(3) 2 ciphers follow the decimal point, $\log m=7+\ldots-10$;
(4) 3 ciphers follow the decimal point, $\log m=6+\ldots-10$; and so on.

Hence Rule $b$.

## INTERPOLATION.

Interpolation is the process of calculating numbers intermediate between those given in a table.

Find $\log 3784$.
From the table, mantissa of $\log$ of $379=0.5786$
From the table, mantissa of $\log$ of $378=0.5775$
$0.0011=$ difference.
Assuming that the increase in the logarithm is proportional to increase in the number, we have mantissa of $\log 3784=0.5775+0.4 \times 0.0011=0.5779$.
The result here given to the nearest unit in the fourth decimal place $0.4 \times 0.0011$ being taken equal to 0.0004 in place of 0.00044 .

PROPORTIONAL PARTS.
For convenience in interpolation, the tabular differences are subdivided into tenths and tabulated under the heading Proportional Parts. In the table given, it is the average of the differences given for the mantissas in one row across the page.

For the fourth figure, add the proportional part given under its column opposite the row of the first two significant figures to the mantissa of the first three significant figures. Thus:

$$
\begin{aligned}
& \text { I. Log } 543.2=\text { ? } \\
& \text { mantissa of } \log 543=0.734^{8} \\
& \text { prop. part for } 0.2=2 \\
& \log 543.2=2.7350 \\
& \text { 2. } \log (251.9)^{3 / 8}=\text { ? } \\
& \text { mantissa of } \log 251=0.3997 \\
& \text { prop. part for } 0.9=15 \\
& \log 251.9 \quad=2.4012 \\
& 2 \\
& \text { 3) } 4.8024
\end{aligned}
$$

```
    Since log (251.9)
    therefore, log (251.9)}\mp@subsup{)}{}{3/3}=1.6008
or solving (251.9)}\mp@subsup{)}{}{3/8}=3.988+\mathrm{ .
    3. Log of 0.07127 = ?
        mantissa of log 712 =0.8525
        prop. part for 7 = 4
            log 0.07127 =8.8529-10
    4. Log of }\sqrt{3}{(0.08163\mp@subsup{)}{}{4}}=\mathrm{ ?
    \sqrt{3}{(0.08163)}=(0.08163)4/3=4/3 log(0.08163)
        mantissa of 816 == =0.9117
        Prop. part of 3 = 2
        Log 0.08163 = 8.9119-10
        4(8.9119-10) = 35.6456-40 = 25.6456-30
        1/3(25.6456-30) = 8.5489-10.
```

Notr.- When a logarithm which is followed by - 10 is to be divided by a number, add and subtract a multiple of ten so that the quotient will come out in a form followed by -ro.

Thus: $\mathrm{I} / 4(8.244-\mathrm{IO})=\mathrm{I} / 4\left(38.244^{8}-40\right)=9.56 \mathrm{r} 2-\mathrm{I} 0$.
ANTILOGARITHMS.
The number whose logarithm is " $x$ " is called the antilogarithm of " $x$." Thus, if $x=\log$ $m$, then $m=$ antilog $x$.

Given a logarithm, to obtain the corresponding number (antilogarithm).

1. $\log \mathrm{m}=0.4806$. $\mathrm{m}=$ ?

Find the first three figures in the mantissa in the antilog table similar to logarithm table only remember that zero in the mantissa before the other figures must be considered, and then add the proportional part of the fourth figure of the mantissa.

In the table of antilogarithms, find 0.48 in the left hand column and run across the page horizontally to the column headed 0 . There we find that antilog of $0.480=3020$. Add to this the proportional part under 6 , which is 4 . This makes the four figures 3024 .

Now the characteristic tells how to place the decimal point counting from the left of the four figures, point off

I place to the right for the characteristic o
2 places to the right for the characteristic 1
3 places to the right for the characteristic 2
4 places to the right for the characteristic 3
If the characteristic is 9 - . . - 10 place decimal in front of figures.
If the characteristic is 8 - . . - 10 place decimal 1 place to the left.
If the characteristic is 7 - .. - - place decimal 2 places to left.
If the characteristic is $6-\ldots$ - io place decimal 3 places to left.
2. $\log m=7.0959-10 . \quad m=$ ?
antiog $0.095=1245$
prop. part o $=3$
antilog $7.0959-10=0.001248$
Sometimes there is a deficiency or excess of I in the fourth decimal, but in all pharmaceutical and chemical assaying, weighing, measuring, etc., if an accuracy of $0.1 \%$ is desired, the 4 place table will suffice, but if greater accuracy is desired the 5,6 or the 10 place logarithms are needed. But for the most part 4 place decimal work is regarded good scientific work.

EXPLANATION OF TERMS USED IN FORMULAS.
I use the terms $\mathrm{N} / \mathrm{I}, \mathrm{N} / 2, \mathrm{~N} / 10$ and $\mathrm{N} / 50$ as titles, and if the solution say $\mathrm{N} / 2 \mathrm{H}_{2} \mathrm{SO}_{4}$ is absolutely accurate and exact, I write it $\mathrm{N} / 2 \mathrm{H}_{2} \mathrm{SO}_{4} 1.000$, and if
otherwise, then $\mathrm{N} / 2 \mathrm{H}_{2} \mathrm{SO}_{4} 0.99$, or $\mathrm{N} / 2 \mathrm{H}_{2} \mathrm{SO}_{4}$ I.III as the case may be. This is the $C$. $F$. or correction factor.
C. F. means the correction factor of a standard volumetric solution or the percent, upon the given normality. There is considerable difficulty experienced in obtaining absolutely accurate volumetric solutions, because of the influence of changes in temperature, humidity and pressure upon them, and the keeping qualities of these solutions. I have adopted the method of standardizing volumetric solutions just at the time of use, when running some pharmaceutical and chemical analyses, and the factor I determine I call the correction factor of the empirical solution, I am using, upon the given normality of that solution.
R. F. equals ratio factor, a ratio merely between two chosen solutions, regardless of whether they are absolutely standard or not, and the factor is always determined at the time of use.
E. F. equivalent factor, which depends entirely upon the normality of the standard volumetric solution chosen, and assumes that the normality chosen is $100 \%$ or has the C. F. of I.000.
$\mathrm{N} / \mathrm{a}$ and $\mathrm{N} / \mathrm{b}$ are algebraic expressions, the a and the b must be given their proper values, and the C. F. of N/a, and E. F. of N/a, their proper values, so that the working of the formulas is possible. Where one formula leads on to the next, it is more convenient to carry over the logarithm of the numbers used, than to find the antilog.

These things will be brought out more clearly by example. (See Example, close of paper.)

There are two formulas for standardizing volumetric solutions:
Formula I.-General Standardization Formula-Solid.
$\log$ Gm. of Standard - $\log$ E. F. of Standard for N/a sol. $-\log$ mils N/a sol. used $=\log$ C. F. N/a sol. Find antilog.

This formula is used for determining the correction factor of a volumetric solution upon its normality, when standardized against a weighed amount of standard, which is a solid, as $\mathrm{N} / 2 \mathrm{NaOH}$ against $\mathrm{KHC}_{4} \mathrm{H}_{4} \mathrm{O}_{6} ; \mathrm{N} / 2 \mathrm{H}_{2} \mathrm{SO}_{4}$ against $\mathrm{Na}_{2} \mathrm{CO}_{3} ; \mathrm{N} /$ io HCl as AgCl ; and $\mathrm{N} /$ ıo $\mathrm{H}_{2} \mathrm{SO}_{4}$ as $\mathrm{BaSO}_{4}$, etc. Here the $N / a$ sol. means $N / 2$ or $N / 1 o$ as the case may be. The E. F. of N/a means E. F. for $\mathrm{N} / 2$ or $\mathrm{N} /$ ıo sol. C. F. i .ooo, and this is given by the fundamental law underlying volumetric chemical analysis that all substances always combine in the same proportion by weight.

Insert the proper values for Gm . of standard, for mils $\mathrm{N} / \mathrm{a}$ sol., for E . F . of $\mathrm{N} / \mathrm{a}$ sol., and apply Formula I; the result is the desired C. F. of the $\mathrm{N} / \mathrm{a}$ sol.

Formula IIa.- $(\mathrm{a}=\mathrm{b})$.
$\log$ mils $N / a$ sol. $+\log$ C. F. N/a sol. $-\log$ mils $N / b$ sol. $=\log$. C. F. of N/b sol. Find antilog.

Formula $I I a^{\prime}$ - $(\mathrm{a}=\mathrm{b})$.
Log mils $\mathrm{N} / a$ sol. $-\log$ mils $\mathrm{N} / \mathrm{b}$ sol. $=\log$. R. F. N/a sol. against $\mathrm{N} / \mathrm{a}$ sol. Find antilog.
Formula IIa".-( $\mathrm{a}=\mathrm{b}$ ).
$\log$ R. F. N/b sol. $+\log$ C. F. N/a sol. $=\log$ C. F. N/b sol. Find antilog.
Formula IIb.一(a $>$ b) $\times 5$.
$\log$ mils N/a sol. $+\log$ C. F. N/a sol. $+\log c-\log$ mils $N / b$ sol. $=\log C$. F. N/b sol. Find antilog.

Formula $I I b^{\prime}$.-( a - b).
Log mils $\mathrm{N} / \mathrm{a}$ sol. $-\log$ mils $\mathrm{N} / \mathrm{b}$ sol. $=\log$ R. F. N/b sol. in terms of $\mathrm{N} / \mathrm{a}$ sol. Find antilog.
$\log$ mils $\mathrm{N} / \mathrm{a}$ sol. $+\log \mathrm{c}-\log$ mils $\mathrm{N} / \mathrm{b}$ sol $=\log \mathrm{R} . \mathrm{F} . \mathrm{N} / \mathrm{b}$ sol. in terms of $\mathrm{N} / \mathrm{b}$ sol. Find antilog.

Forniula $I I b^{\prime \prime}$.-(a $>$ b).
$\log$ R. F. N/b sol. $+\log c+\log$ C. F. N/a sol. $=\log$ C. F. N/b sol. Find antilog.
$\log$ R.F. N/b sol. as $N / b+\log C . F$. N/a sol. $=\log C$. F. of $N / b$ sol. Find antilog.
Formula IIc.-( $\mathrm{a}<\mathrm{b}$ ).
$\log$ mils $N / a$ sol. $+\log C . F$. N/a sol. $-\log C-\log$ mils $N / b$ sol. $=\log C . F . N / b$ sol. Find antilog.

Formula $I I c^{\prime}$.- $(\mathrm{a}>\mathrm{b})$.
Log mils $N / a$ sol. $-\log$ mils N/b sol. $=\log$ R. F. N/b sol. as N/a. Find antilog.
$\log$ mils N/a sol. $-\log$ mils N/b sol. $-\log c=\log$ R. F. N/b sol. as N/b. Find antilog.
Formula $I I c^{\text {g. - }}$ ( $\left.\mathrm{a}>\mathrm{b}\right)$.
$\log$ R.F. N/b sol. as N/a-loge+ $\log$ C. F.N/a sol. $=\log C . F . N / b$ sol. Find antilog.
$\log$ R.F. N/b sol. as $\mathbf{N} / \mathrm{b}+\log \mathrm{C} . \mathrm{F} . \mathrm{N} / \mathrm{a}$ sol. $=\log \mathrm{C} . \mathrm{F} . \mathrm{N} / \mathrm{b}$ sol. Find antilog.
In the above formulas the Formula $I I a$ is the most general, and the others modifications of it to meet the different cases.

The- one volumetric solution here is standardized against another, the latter having a known correction factor from Formula I, then after properly placing the data, and applying Formula II, the result gives C. F. of the N/a sol. The several forms of Formula II cover changes in normality as $\mathrm{N} / 2$ to $\mathrm{N} / \mathrm{ro}, \mathrm{N} /$ io to $\mathrm{N} / 50$, and vice versa, where blank tests are run, and where one solution depends upon another standard solution for its correction factor at the time of use.

Formula IIIa.-General Assay Formula Direct Titration.
$\log$ mils $N /$ a sol. $+\log$ C. F. N/a sol. $+\log$ E. F. N/a sol. $+\log 100-\log$. wt. substance taken $=\log \% \mathrm{w} / \mathrm{w}$. Find antilog.
$\% \mathrm{w} / \mathrm{w}=$ absolute percentage, or percent by weight.
Formula IIIb.
$\log$ mils $N / a$ sol. $+\log$ C. F. N/a sol. $+\log$ E. F. N/a sol. $+\log 100-\log$ vol. substance taken $=\log \% \mathrm{w} / \mathrm{v}$. Find antilog.
$\% \mathrm{w} / \mathrm{v}=$ percentage concentration, or percent weight to volume.
The foregoing Formula III applies to all direct titrations, and is also used after Formula IV in residual titrations for all crude drugs, chemicals and their preparations which are assayed volumetrically. The two forms cover the cases of desired $\% \mathrm{w} / \mathrm{w}$ or $\% \mathrm{w} / \mathrm{v}$. Placing the values properly will give the desired results.

Formula IV and its several modifications apply to residual titrations, where volumetric solutions of like or unlike normality are used, and after determining the difference, further calculations are carried out then by use of Formula IIIa or IIIb.

Formula IVa.- $(\mathrm{a}=\mathrm{b})$.
$\log \operatorname{mils} \mathrm{N} / \mathrm{a}$ sol. $+\log \mathrm{C}$. F. N/a sol. $=\log$ mils $\mathrm{N} / \mathrm{a}$ sol. C. F. 1.000 . Find antilog.
$\log$ mils N/b sol. $+\log$ C. F. N/b sol. $=\log$ mils N/b sol. C. F. i.ooo. Find antilog.
Subtract the antilogs, and the result equals mils used by substance. Then apply Formula III $a$ or III $b$ as required.

Formula IVb.-(a>b).
$\log$ mils $N / a$ sol. $+\log C$. F. N/a sol. $+\log c=\log$ mils N/b sol. used in excess. Find antilog.
$\log$ mils $N / a$ sol. $+\log C . F . N / b$ sol. $=\log$ mils $N / b$ sol. used in residual titration. Find antilog.

Subtract the antilogs and the result equals the mils used by the substance. Then apply Formula III $a$ or III $b$, as required.

Formula $I V b^{\prime}$ from $I V b$.-( $\mathbf{a}>$ b).
$\log$ mils $N / b$ sol. C. F. $1.000-\log c=\log \operatorname{mils} N / a$ sol. C. F. i.000. Find antilog. Then apply III $a$ or III $b$ as required, using N/a E. F.

Formula $I V C$.- $(\mathrm{a}<\mathrm{b})$.
This is the same as IVb, only values of $a$ and $b$ are vice versa, therefore changes signs + to -, and - to + . Then apply Formula III $a$ or III $b$.

There is one formula for gravimetric and electrolytic analyses. I have used this because the U. S. P. states how much of any substance should be present as such and such $q$ weight, and so these formulas will give the percentage if the values are properly placed.

Formula Va.
Let $m=w t$. of sub. obtained, and $w=w t$. of sub. taken, then $\log m+\log 100-\log \mathbf{w}=$ $\log \% \mathrm{w} /$ w.

Formula Vb.
$\log m+\log 100-\log \mathrm{V}=\log \% \mathrm{w} / \mathrm{v} . \quad \mathrm{c}=$ vol. taken.
It will be noticed that I introduced $\log$ of 100 or 2.000 into Formulas III and V. This is done to make the $\%$ be expressed with its sign. If one desires that it is expressed as a decimal fraction, omit the $\log$ of roo. I have found the latter method too confusing, and so I have retained $\log 100$ and after the figures place the $\%$ sign.
I. In order to use any empirical solution, I have tabulated for class and laboratory use the volumetric solutions of the U.S. P. and after them their abbreviations, and the formulas to be applied.

It has been my experience that $\mathrm{N} / 2, \mathrm{~N} / 10$ and $\mathrm{N} / 50$ solutions will suffice for nearly all the volumetric analyses, and therefore I have only listed those.

Tenth Normal Barium Hydroxide, $\mathrm{N} / \mathrm{ro} \mathrm{Ba}(\mathrm{OH})_{2}$
IIa against $\mathrm{N} / \mathrm{ro} \mathrm{HCl}$
IIb against $\mathrm{N} / 2 \mathrm{HCl}$
Tenth Normal Bromine, $\mathrm{N} /$ ıo Br
IIa against $\mathrm{N} /$ ro $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}-5$
Half Normal Hydrochloric Acid, $\mathrm{N} / \mathbf{2} \mathbf{~ H C l}$
I against $\mathrm{Na}_{2} \mathrm{CO}_{3}$
I as AgCl
IIa against $\mathrm{N} / 2 \mathrm{KOH}$ or $\mathrm{N} / 2 \mathrm{NaOH}$
IIc against $\mathrm{N} / \mathrm{ro} \mathrm{KOH}$ or $\mathrm{N} / \mathrm{ro} \mathrm{NaOH}$
Tenth Normal Hydrochloric Acid, $\mathrm{N} / 10 \mathrm{HCl}$
I against $\mathrm{Na}_{2} \mathrm{CO}_{3}$
I as AgCl
IIa against $\mathrm{N} /$ ro KOH or $\mathrm{N} / \mathrm{ro} \mathrm{NaOH}$
IIb against $\mathrm{N} / 2 \mathrm{KOH}$ or $\mathrm{N} / \mathrm{I} \mathrm{NaOH}$
IIc against $\mathrm{N} / 5 \mathrm{O} \mathrm{KOH}$ or $\mathrm{N} / 5 \mathrm{NaOH}$
Tenth Normal Iodine, $\mathrm{N} / \mathrm{roI}$
IIa against $\mathrm{N} /$ ro $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$
Tenth Normal Oxalic Acid, $\mathrm{N} /$ 10 $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
IIa against $\mathrm{N} /$ ıo $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ or $\mathrm{N} /$ ıo $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
Tenth Normal Potassium Dichromate or Sodium Dichromate, $\mathrm{N} /$ ıo $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{\boldsymbol{T}}$ $\mathrm{N} /$ гo $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{\text {; }}$
I against pure iron, Fe
Ilb against $\mathrm{N} / \mathrm{Io} \mathrm{KOH}$ or $\mathrm{N} / \mathrm{Io} \mathrm{NaOH}$. ( $(\mathrm{c}=3$ )
IIa against $\mathrm{N} /$ Io $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$
Half Normal Potassium Hydroxide, $\mathrm{N} / \mathbf{2} \mathbf{K O H}$
I against $\mathrm{KHC}_{4} \mathrm{H}_{4} \mathrm{O}_{6}$
Ila against $\mathrm{N} / 2 \mathrm{HCl}$ or $\mathrm{N} / 2 \mathrm{H}_{2} \mathrm{SO}_{4}$
IIc against $\mathrm{N} / 10 \mathrm{HCl}$ or $\mathrm{N} / 10 \mathrm{H}_{2} \mathrm{SO}_{4}$
Tenth Normal Potassium Hydroxide, $\mathrm{N} / \mathrm{ro} \mathrm{KOH}$
I against $\mathrm{KHC}_{4} \mathrm{H}_{4} \mathrm{O}_{6}$
IIa against $\mathrm{N} / 10 \mathrm{HCl}$ or $\mathrm{N} /$ เo $\mathrm{H}_{4} \mathrm{SO}_{4}$
Ilb against $\mathrm{N} / 2 \mathrm{HCl}$ or $\mathrm{N} / 2 \mathrm{H}_{2} \mathrm{SO}_{4}$
Fiftieth Normal Potassium Hydroxide, N/50 KOH
I against $\mathrm{KHC}_{4} \mathrm{H}_{4} \mathrm{O}_{6}$
Ila against $\mathrm{N} / 5 \mathrm{oHCl}$ or $\mathrm{N} / \mathrm{so}_{\mathrm{H}} \mathrm{H}_{\mathbf{2}} \mathrm{O}_{4}$
IIb against $\mathrm{N} / 10 \mathrm{HCl}$ or $\mathrm{N} /$ го $\mathrm{H}_{2} \mathrm{SO}_{4}$

Half Normal Alcoholic Potassium Hydroxide, N/19 KOH al.
I against $\mathrm{KHC}_{4} \mathrm{H}_{4} \mathrm{O}_{6}$
IIa against $\mathrm{N} / 2 \mathrm{HCl}$ or $\mathrm{N} / 2 \mathrm{H}_{2} \mathrm{SO}_{4}$
IIc against $\mathrm{N} /$ ro HCl or $\mathrm{N} /$ ıo $\mathrm{H}_{2} \mathrm{SO}_{4}$
Tenth Normal Potassium Permanganate, $\mathrm{N} /$ го $\mathrm{KMnO}_{4}$
I against $\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$
IIa against $\mathrm{N} /$ ıo Oxalic Acid, or $\mathrm{N} /$ so Thiosulphate
Tenth Normal Potassium Sulphocyanate, N/ro KCNS
I against NaCl
IIa against $\mathrm{N} /$ ro $\mathrm{AgNO}_{3} ; \mathrm{N} /$ ro $\mathrm{HCl} ; \mathrm{N} /$ ıo NaCl
IIb against $\mathrm{N} / 2 \mathrm{HCl}$
Tenth Normal Silver Nitrate, $\mathrm{N} /$ io $\mathrm{AgNO}_{3}$
I against NaCl or as AgCl
IIa against $\mathrm{N} /$ ı 10 KCNS ; $\mathrm{N} /$ 1о $\mathrm{HCl} ; \mathrm{N} / 19 \mathrm{NaCl}$
Tenth Normal Sodium Chloride, $\mathrm{N} / 19 \mathrm{NaCl}$
I as AgCl
IIa against $\mathrm{N} /$ io $\mathrm{AgNO}_{8}$
Half Normal Sodium Hydroxide, $\mathrm{N} / 2 \mathrm{NaOH}$
I against $\mathrm{K} \mathrm{HC}_{4} \mathrm{H}_{4} \mathrm{O}_{6}$
IIa against $\mathrm{N} / 2 \mathrm{HCl}$ or $\mathrm{N} / 2 \mathrm{H}_{2} \mathrm{SO}_{4}$
IIc against $\mathrm{N} /$ io HCl or $\mathrm{N} /$ ıo $\mathrm{H}_{2} \mathrm{SO}_{4}$
Tenth Normal Sodium Hydroxide, $\mathrm{N} /$ io NaOH
I against $\mathrm{KHO}_{4} \mathrm{H}_{4} \mathrm{O}_{6}$
IIa against $\mathrm{N} /$ ıo HCl or $\mathrm{N} / 19 \mathrm{H}_{2} \mathrm{SO}_{4}$
IIb against $\mathrm{N} / 2 \mathrm{HCl}$ or $\mathrm{N} / 2 \mathrm{H}_{2} \mathrm{SO}_{4}$
IIc against $\mathrm{N} / 50 \mathrm{HCl}$ or $\mathrm{N} / 50 \mathrm{H}_{2} \mathrm{SO}_{4}$
Fiftieth Normal Sodium Hydroxide, $\mathrm{N} / 50 \mathrm{NaOH}$
I against $\mathrm{KHC}_{4} \mathrm{H}_{4} \mathrm{O}_{6}$
IIa against $\mathrm{N} / 50 \mathrm{HCl}$ or $\mathrm{N} / 50 \mathrm{H}_{2} \mathrm{SO}_{4}$
IIb against $\mathrm{N} /$ ıo HCl or $\mathrm{N} /$ ıo $\mathrm{H}_{2} \mathrm{SO}_{4}$
Tenth Normal Sodium Thiosulphate, $\mathrm{N} /$ ro $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$
I against Iodine
IIa against $\mathrm{N} /$ го $=\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} ; \mathrm{N} / 10 \mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} ; \mathrm{N} /$ го $\mathrm{KMnO}_{4}$
Half Normal Sulphuric Acid, $\mathrm{N} / 2 \mathrm{H}_{2} \mathrm{SO}_{4}$
I against $\mathrm{Na}_{2} \mathrm{CO}_{3}$
IIa against $\mathrm{N} / 2 \mathrm{KOH}$ or $\mathrm{N} / 2 \mathrm{NaOH}$
IIc against $\mathrm{N} /$ io KOH or $\mathrm{N} /$ ro NaOH
Tenth Normal Sulphuric Acid, N/io $\mathrm{H}_{2} \mathrm{SO}_{4}$
I against $\mathrm{Na}_{2} \mathrm{CO}_{3}$
IIa against $\mathrm{N} /$ ı 0 KOH or $\mathrm{N} /$ io NaOH
IIb against $\mathrm{N} / 2 \mathrm{KOH}$ or $\mathrm{N} / 2 \mathrm{NaOH}$
IIc against $\mathrm{N} / 50 \mathrm{KOH}$ or $\mathrm{N} / 50 \mathrm{NaOH}$
Fiftieth Normal Sulphuric Acid, N/50 $\mathrm{H}_{2} \mathrm{SO}_{4}$
I against $\mathrm{Na}_{2} \mathrm{CO}_{3}$
IIa against $\mathrm{N} / 50 \mathrm{KOH}$ or $\mathrm{N} / 50 \mathrm{NaOH}$
IIb against $\mathrm{N} /$ io KOH or $\mathrm{N} /$ io NaOH
Copper Sulphate Solution of Fehling's, $\mathrm{CuSO}_{4}$
I against Sugar
IIc against N/ı Thiosulphate (ro Cc. $=27.75 \mathrm{Cc} . \mathrm{N} /$ ıo Thio.)
Iodo Bromide Test Solution, IBr T. S.
IIc against $N /$ ıo Thiosulphate
2. For use in class and in the laboratory, I have tabulated all the assays of the U. S. P. and N. F., volumetrically, gravimetrically, and electrolytically, and after the Latin abbreviation give the formula to be applied.

The list is as follows:


| U. S. P. ix (Continued). |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 96 Liq. Ferr. Persulph. | IIIa | 150 | Pot. Permang. | IIIa |
| 97 Liq. Formaldehyd. | IVa \& IIIa | 151 | Pulv. Eff. Co. | IVa \& IIa |
| 98 Liq. Hydrog. Diox. | IIIa |  |  | for Na - |
| 99 Liq. Iod. Co. | IIIa |  |  | $\mathrm{HCO}_{3}$ |
| 100 Liq. Plumb. Subacet. | IVa \& IIIa |  |  | IIIa for |
| 101 Liq. Pot. Arsen. | IIIa |  |  | $\mathrm{KNaC4}_{4}{ }^{-}$ |
| 102 Liq. Pot. Cit. | IIIa |  |  | $\mathrm{H}_{4} \mathrm{O}_{6}$ |
| 103 Liq. Pot. Hydrox. | IIIa | 152 | Sod. Acet. | IIIa |
| Io4 Liq. Sod. Chlorinat. | IIIa | 153 | Sod. Arsen. | IIIa |
| 105 Liq. Sod. Arsen. | IIIa | 154 | Sod. Arsen. Exsic. | IIIa |
| 106 Liq. Sod. Glycerophos. | lIIa | 155 | Sod. Benz. | IIIa |
| 107 Liq. Sod. Hydrox. | IIIa | 156 | Sod. Bicarb. | IIIa |
| Io8 Liq. Zinc. Chlor. | IVa \& IIIa | 157 | Sod. Bor. | IIIa |
| 109 Lith. Brom. | IVa \& IIIa | 158 | Sod. Brom. | Illa |
| 1 Io Lith. Carb, | lVa \& IIIa | 159 | Sod. Cacodyl. | IIIa |
| In Lith. Cit. | IIIa | 160 | Sod. Carb. Monohyd. | IIla |
| 112 Magm. Mag. | IVa \& IIIa | 161 | Sod. Chlor. | IVa \& IIIa |
| 113 Mag. Carb. | IVa \& IIIa | 162 | Sod. Cit. | IIIa |
| 114 Mag. Oxid. | IVa \& IIIa | 163 | Sod. Cyan. | IVa \& IIIa |
| 115 Mag. Oxid. Pond. | IVa \& IIIa | 164 | Sod. Glycerophos. | IIIa |
| 116 Mangan. Diox. Praec. | IVa \& IIIa | 165 | Sod. Hydrox. | IIIa |
| 117 Mass. Ferr. Carb. | IIIa | 166 | Sod. Hypophos. | IVa \& IIIa |
| 118 Mass. Hydrarg. | IIIa | 167 | Sod. Iod. | IVa \& IIIa |
| 119 Methyl Salicyl. | IVa \& IIIa | 168 | Sod. Nitris | IIIa |
| 120 Nux Vom. | IVa \& IIIa | 169 | Sod. Perbor. | IIIa |
| 121 Ol. Amygd. Amar. | IVa \& IIIa | 170 | Sod. Phenolsulph. | IVa \& IIIa |
| 122 Ol. Limon. | IVa \& IIIa | 171 | Sod. Phos. | IVa \& lla |
| 123 Ol. Menth. PiP. | IVa \& IIIa | 172 | Sod. Phos. Exsic. | IVa \& Illa |
| 124 Ol. Rosmar. | IVa \& IIIa | 173 | Sod. Salicyl. | IIla |
| 125 Ol. Santal. | IVa \& IIIa | 174 | Sod. Sulphis Exsic. | IVa \& lIIa |
| 126 Ol. sinap. Vol. | IVa \& IIIa | 175 | Sod. Thiosulph. | IlIa |
| 127 Opii Pulv. | IVb \& IIIa | 176 | Stramon. | IVb \& IIIa |
| 128 Opium | IVb \& IIIa | 177 | Stront. Brom. | IVa \& IIIa |
| 129 Opium Deod. | IVb \& IIIa | 178 | Stront. Iod. | IVa \& IIIa |
| 130 Opium. Gran. | IVb \& IIIa | 179 | Stront. Salicyl. | IIIa |
| 131 Paraform. | IVa \& IIIa | 180 | Syr. Acid. Hydriod. | IVa \& IIIa |
| 132 Phenol. | IVa \& IIIa | 181 | Syr. Ferr. Iod. | IVa \& IIIa |
| 133 Phenol. Liq. | IVa \& IIIa | 182 | Theobrom. Sodio-Sal. | IIIa |
| 134 Physostig. | IVb \& IIIa | 183 | Thymol. Iod. | IIIa |
| 135 Pilocarp. | IVb \& IIIa | 184 | Thyroid. Sicc. | IIIa |
| 136 Plumb. Acet. | IVa \& IIIa | 185 | Tr. Aconit. | IVb \& IIIb |
| 137 Plumb. Oxid. | IVa \& IIIa | 186 | Tr. Bellad. Fol. | IVb \& IIIb |
| 138 Pot. Acet. | IIIa | 187 | Tr. Ferr. Chlor. | IIIa |
| 139 Pot. Bicarb. | IIIa | 188 | Tr. Hyoscy. | IVb \& IIIb |
| 140 Pot. Bitart. | IIIa | 189 | Tr. lodi | IIIb |
| 141 Pot. Brom. | IVa \& IIIa | 190 | Tr. Nux Vom. | IVb \& IIIb |
| 142 Pot. Carb. | IIIa | 191 | Tr. Opii | IVb \& IIIb |
| 143 Pot. Chlor. | IVa \& IIIa | 192 | Tr. Opii Deod. | 1Vb \& IIIb |
| 144 Pot. Cit. | IIIa | 193 | Tr. Physostig. | IVb \& IIIb |
| 145 Pot. et. Sod. Tart. | IIIa | 194 | Tr. Stramon. | IVb \& IIIb |
| 146 Pot. Hydrox. | IIIa | 195 | Zinc. Carb. | IIIa |
| 147 Pot. Hypophos. | IVa \& IIIa | 196 | Zinc. Chlor. | IVa \& IIIa |
| 148 Pot. Iod. | IVa \& IIIa | 197 | Zinc. Oxid. | IIIa |
| 149 Pot. Nitras. | IVa \& IIIa | 198 | Zinc. Stear. | IVa \& IIIa |


| Gravimetric Latin Abbreviation. | U. S. P. IX (Continued). |  |  | Formula. |
| :---: | :---: | :---: | :---: | :---: |
|  | Formula. | Gravimetric Latin Abbreviation |  |  |
| Alum. as $\mathrm{AlO}_{3}$ | Va | 44 | Quin. Tann. for quinine | Va |
| Alum. Exsic. | Va | 45 | Scam. Rad. for resin | Va |
| 3 Asafoet. | Va | 46 | Sod. Sulphas as BaSO4 | Va |
| 4 Bism. Betanaph. as Betanaphthol | Va | $\begin{aligned} & 47 \\ & 48 \end{aligned}$ | Sp. Camphor as camphor Sulphur Bot. as BaSO، | Polariscope $\mathrm{Va}$ |
| Bism. Betanaph. as $\mathrm{Bi}_{2} \mathrm{O}_{3}$ | Va | 49 | Sulphur Praec. as $\mathrm{BaSO}_{4}$ | Va |
| 5 Bism. et Ammon. Cit. as |  | 50 | Sulphur Sublim. as $\mathrm{BaSO}_{4}$ | Va |
| $\mathrm{Bi}_{2} \mathrm{O}_{8}$ | Va | 51 | Tr. Cinchon. as quinine | Vb |
| 6 Bism. Subcarb. as $\mathrm{Bi}_{2} \mathrm{O}_{3}$ | Va | 52 | Tr. Cinchon. Co. as quinine | Vb |
| 7 Bism. Subgal. as $\mathrm{Bi}_{2} \mathrm{O}_{3}$ | Va | 53 | Tr. Colch. Sem. as colchicine | Vb |
| 8 Bism. Subnit. as $\mathrm{Bi}_{2} \mathrm{O}_{3}$ | Va | 54 | Tr. Hydrast. as hydrastine | Vb |
| 9 Bism. Subsalicyl. as $\mathrm{Bi}_{2} \mathrm{O}_{3}$ | Va | 55 | Tr . Iodi for Ki | Vb |
| 1o Caffein. Cit. as Caffeine | Va | 56 | Toxitabel. Hydrarg. Chlor. |  |
| 11 Caff. Sod. Benz. as Caffeine | Va |  | Corr. as HgS | Va |
| 12 Calc. Glycerophos. as CaO | Va | 57 | Ung. Hydrarg. Dil. | Va |
| 13 Canthar. as cantharidin | Va | 58 | Ung. Hydrarg. Dil. | Va |
| 14 Cinch. as cinchona | Va | 59 | Uran. Nit. as $\mathrm{U}_{8} \mathrm{O}_{8}$ | Va |
| 15 Cinch. Rub. cinchona | Va | 00 | Zinc. Acet. as ZnO | Va |
| 16 Colch. Corm. as colchicine | Va | 61 | Zinc. Phenolsulph. as ZnO | Va |
| 17 Colch. Sem. as cochicine | Va | 62 | Zinc. Sulph. as ZnO | Va |
| 18 Collod. as pyroxylin | Va | 63 | Zinc. Valer. as ZnO | Va |
| 19 Diastase | $50 \times$ starch | 64 | Zinc. as ZnO | Va |
| 20 Ext. Colch. as colchicine | Va |  | trolytic Latin Abbreviation. | Formula. |
| 21 Ext. Hydrast. as hydrastine | Va | 1 | Hydrarg. Chlor. Cor. | Va |
| 22 Ferr. et Quin. Cit. as quinine | Va | 3 | Hydrarg. Chlor. Mit. Hydrarg. Iod. Flav. | $\mathrm{Va}$ |
| 23 Fldext. Cinchon. as cin- |  | 4 | Hydrarg. Iod. Rub. | Va |
| chona | Vb | 5 | Hydrarg. Oxid. Flav. | Va |
| 24 Fidext. Colch. Sem. as col- |  | 6 | Hydrarg. Oxid. Rub. | Va |
| chicine | Vb | 7 | Hydrarg. Salicyl. | Va |
| 25 Fldext. Guran. as caffeine | Vb | 8 | Hydrarg. | Va |
| 26 Fldext. Hydrast. as hydras- |  | 9 | Hydrarg. Ammon. | Va |
| tine | Vb | 10 | Hydrarg. cum Cret. | Va |
| 27 Glycer. Hydrast. as hydrastine | Vb | 11 | Toxitabel. Hydrarg. Chlor. Corr. | Va |
| 28 Guaran. as caffeine | Va | 12 | Zinc. Acet. | Va |
| 29 Hydrarg. Chlor. Corr. as HgS | Va | 13 | Zinc. Phenolsulph. | Va |
| 30 Hydrarg. Ammon. as HgS | Va | 14 | Zinc. Sulph. | Va |
| 31 Hydrastis as hydrastine | Va | 15 | Zinc. Valer. | Va |
| 32 Jalap as resin | Va | 16 | Zinc. | Va |
| 33 Lin. Camph. as camphor | Polariscope |  |  |  |
| 34 Liq. Iod. Co. for KI | Va | vol | Umetric assays in the nation | NAL FORMU- |
| 35 Liq. Mag. Cit. as magnesium |  |  | ary. |  |
| pyrophosphate | Va |  | Latin Abbreviation. | Fgrmula. |
| 36 Magma Bis. as $\mathrm{Bi}_{2} \mathrm{O}_{3}$ | Va | 1 | Ext. Conii | IVb \& IIIa |
| 37 Mag. Sulph. as magnesium pyrophosphate | Va | 3 | Ext. Ignat. Ferr. Oxid. Sacch. | IVb \& IIIa IIIa |
| 38 Malt | 5x starch | 4 | Fldext. Conii | IVb \& IIIa |
| 39 Pancreat. | 25x starch | 5 | Fldext. Stramon. | IVb \& IIIa |
| 40 Pepsin | 300x egg | 6 | Liq. Ferr. Acet. | IIIa |
|  | albumen | 7 | Liq. Ferr. Cit. | IIIa |
| 41 Podophyl. for resin | Va | 3 | Liq. Hydrarg. Nit. | IIIa |
| 42 Pot. sulphurat. for S | Va | 9 | Sulphur. Iod. | IIIa |
| 43 Quin. et Urea Hydrochlor. |  | 10 | Tr. Opii Crocat. | IVb \& IIIb |
| for quinine | Va | 11 | Vin. Ipecac | IVb \& IIIb |

volumetric assays in the national formulary (Continued).

|  | Latin Abbreviation. | Formula. |  | Gravimetric Latin Abbreviation. | Formula. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 12 | Acid. Formic. | IIIb | 1 | Fldext. Cinchon. Aq. as qui- |  |
| 13 | Ammon. Hypophos. | IVa \& IIIa |  | nine | Vb |
| 14 | Ammon. Phos. | IVa \& IIIa | 2 | Fldext. Colch. Corm. as col- |  |
| 15 | Antimon. Oxid. | IIIa |  | chicine | Vb |
| 16 | Antimon. Sulphuret. | IIIa | 3 | Glycer. Bism. as $\mathrm{Bi}_{2} \mathrm{O}_{3}$ | Vb |
| 17 | Bromium | IIIa | 4 | Liq. Alumin. Acet. as $\mathrm{Al}_{2} \mathrm{O}_{3}$ | Vb |
| 18 | Conium | IVb \& IIIa | 5 | Liq. Alumin. Subacet. as $\mathrm{Al}_{2} \mathrm{O}_{3}$ | Vb |
| 19 | Ferr. Glycerophos. | IIIa | 6 | Vin. Colch. Sem. as colchicine | Vb |
| 20 | Ferr. Hypophos. | IIIa | 7 | Alum. Chlor. as $\mathrm{Al}_{2} \mathrm{O}_{3}$ | Va |
| 21 | Ferr. Lact. | IIIa | 8 | Alum. Sulph. as $\mathrm{Al}_{2} \mathrm{O}_{3}$ | Va |
| 22 | Ferr. Pyrophos. | IIIa | 9 | Caff. Tost. as caffeine | Va |
| 23 | Ignat. | IVb \& IIIa | 10 | Kola as caffeine | Va |
| 24 | Lith. Salicyl. | IIIa | 11 | Mangan. Cit. Sol. as $\mathrm{Mn}_{8} \mathrm{O}_{4}$ | Va |
| 25 | Magnes. Chlorid. | IVa \& IIIa | 12 | Mangan. Glycerophos. Sol. as |  |
| 26 | Mangan. Hypophos. | IVa \& IIIa |  | $\mathrm{Mn}_{3} \mathrm{O}_{4}$ | Va |
| 27 | Ol. Bergam. | IVa \& IIIa | 13 | Mangan. Sulph. as $\mathrm{Mn}_{3} \mathrm{O}_{4}$ | Va |

As 4 place logarithms are sufficiently accurate for almost all of the present pharmaceutical assaying, the E. F. of substances for $\mathrm{N} / 2, \mathrm{~N} / 10$ and $\mathrm{N} / 50$ solutions, as found in U.S. P., can be easily changed into their corresponding logarithms. I have likewise made a list of these logarithmic equivalents, but have not put them into the body of this paper, because applying the rule for logarithms it is easy to find the one that is needed, or many chemical annuals give those values, but for convenience in pharmaceutical assaying I have listed them under headings $\mathrm{N} / 2, \mathrm{~N} / 10$ and $\mathrm{N} / 50$ instead of under each volumetric solution, and have appended them to this paper, at the very close.

It may still appear useless and too far-fetched and beyond the average intellect of the pharmacy student to apply such a mathematical training to pharmaceutical assaying. Let me state, in closing, that when I presented this a year ago last summer to the conference of instructors at the University of Wisconsin, under the leadership of Dr. Edward Kremers, I was asked by Mr. Roland Kremers if I really taught such engineering rules to the pharmacy students. In reply, I said "I really did," and I still do so. It has been my peculiar experience, as a pharmacy student, to have been well grounded in engineering physics and mathematics, and these, combined with chemistry, pharmacology, physiology and pharmacy, have given me a little insight into some of the complexities found in pharmaceutical assaying.

If I can calculate the results correctly from the standardization of a volumetric solution to the assay of a crude drug, chemical, or their preparations by direct or residual titration inside of 5 to 10 minutes, once the data are obtained, and the tables at hand, I feel that the method is certainly a time and labor saving device, as well as accurate, and one that can be rechecked quickly. However, when I have several hundred mathematical calculations in pharmaceutical assaying to look over and correct, I personally use the slide rule, and it takes but a moment to see where errors and blunders have been made.

I could also append the discussion of experimental error, mathematical error; such as absolute error; percentage of error; and probable error; which is involved in
all pharmaceutical assaying, but I have purposely omitted it from this paper because it would make it quite lengthy, and is also an entirely different phase, yet very important in pharmaceutical assaying, and tells why some things are really difficult, and the accuracy that can be attained.

In order to show by concrete example how these formulas apply, consider the following example:

Given-4.704 Gm. $\mathrm{KHC}_{4} \mathrm{H}_{4} \mathrm{O}_{6}$ require 45.82 mils $\mathrm{N} / 2 \mathrm{NaOH}$ for neutralization.
Also- 48.75 mils $\mathrm{N} / 2 \mathrm{H}_{2} \mathrm{SO}_{4}$ neutralize $42.96 \mathrm{mils} \mathrm{N} / 2 \mathrm{NaOH}$.
In assaying a sample of hydrated chloral, 3.039 Gm . of it , after the addition of 50 mils $\mathbf{N} / \mathbf{2} \mathbf{N a O H}$, standardized a above, in excess, upon residual titration, required $\mathbf{2 2 . 3 5}$ mils $\mathbf{N} / \mathbf{2}$ $\mathrm{H}_{2} \mathrm{SO}_{4}$.

What is the \% strength of the hydrated chloral?
ist. Apply Formula I to get C. F. of $\mathrm{N} / 2 \mathrm{NaOH}$.

| $\log 4.704$ | 0.6725 | $1 \mathrm{mil} \mathrm{N} / 2 \mathrm{NaOH}=0=0.09407=8.9734-\mathrm{ro}$ |
| :---: | :---: | :---: |
| $-\log$ E. F. 0.09407 | 8.9734 - 10 |  |
|  | 1.6991 |  |
| - log mils --45.82 | 1.6611 |  |
| $=\log$ C. F. N/2 NaOH | 0.0380 | = 1.091 |

2nd. Apply Formula IIa to get C. F. of $\mathrm{N}_{1} / 2 \mathrm{H}_{2} \mathrm{SO}_{4}$.

| $\log 42.96$ | 1.6320 |
| :--- | :--- |
| $+\log 1.091$ | 0.0380 |
|  | 1.5940 |
| $-\log 48.75$ | 1.6879 |
| $=\log$ C. F. N/2 H2SO | $9.9061-10=0.8056$ |

3rd. Apply Formula IVa for residual titration.

| $\begin{aligned} & \log 50 \\ + & \log 1.091 \end{aligned}$ | $\begin{aligned} & 1.6990 \\ & 0.0380 \end{aligned}$ | antilog or no. |
| :---: | :---: | :---: |
|  | 1.7370 | $=54.58 \mathrm{mils} \mathrm{N}^{\prime} / 2 \mathrm{NaOH}_{1} .000$ used in excess |
| $\begin{aligned} & \log 22.35 \\ + & \log 0.8056 \end{aligned}$ | 1.3493 |  |
|  | 9.9061 |  |
|  | I . 2554 | $=18$. or mils $\mathrm{N} / 2 \mathrm{H}_{2} \mathrm{SO}_{4} 1.000 \mathrm{mils}$ used in residuar titration |

36.57 mils $N / 2$ sol. I . 000 used by bydrated chloral

4th and lastly. Apply Formula IIIa for \% of hydrated chloral.

| $\log 3657$ | 1.5630 |
| :--- | :--- |
| $+\log 0.08270$ | $8.9175-10$ |
| $+\log 100$ | 2.0000 |
|  | 2.4805 |
|  | 0.4827 |
| $-\log 3.039$ | 1.9978 |
| $=\log \%$ |  |

logarithmic equivalents.

| No. | . Chemical, | Formula. N | N/2 Equivale | nt Logarithm. |
| :---: | :---: | :---: | :---: | :---: |
| 1 | Acetic Acid | $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ | 0.03002 | $8.4774-10$ |
| 2 | Acetic Anhydride | $\left(\mathrm{CH}_{8} \mathrm{CO}\right)_{2}$ | 0.02551 | 8.4067-10 |
| 3 | Ammonia Gas | $\mathrm{NH}_{3}$ | 0.00852 | 7.9304-10 |
| 4 | Ammonium Acetate | $\mathrm{NH}_{4} \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ | 0.03854 | 8.5860-10 |
| 5 | Ammonium Carbonate | $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$ | 0.02402 | 8.3804-10 |
| 6 | Ammonium Carbonate (U. S. P.) | $\mathrm{NH}_{4} \mathrm{HCO}_{3} \cdot \mathrm{NH}_{4} \mathrm{NH}_{2} \mathrm{CO}_{2}$ | 0.02619 | 8.4181-10 |
| 7 | Ammonium Chloride | $\mathrm{NH}_{4} \mathrm{Cl}$ | 0.02675 | 8.4273-10 |
| 8 | Barium Hydroxide | $\mathrm{Ba}(\mathrm{OH})_{2}+8 \mathrm{H}_{2} \mathrm{O}$ | 0.07888 | 8.8969-10 |
| 9 | Benzaldehyde | $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}$ | 0.05300 | 8.7243-10 |
| 10 | Boric Acid | $\mathrm{H}_{8} \mathrm{BO}_{3}$ | 0.03101 | $8.4915-10$ |
| 11 | Borneol | $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}$ | 0.07707 | 8.8869-10 |
| 12 | Bornyl Acetate | $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ | 0.09808 | 8.9916-10 |
| 13 | Calcium Carbonate | $\mathrm{CaCO}_{3}$ | 0.02502 | 8.3982-10 |
| 14 | Calcium Hydroxide | $\mathrm{Ca}(\mathrm{H})_{2}$ | 0.01852 | $8.2677-10$ |
| 15 | Calcium Lactate | $\mathrm{Ca}\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{5}\right)$ anhydrous | 0.05454 | 8.7367-10 |
| 16 | Calcium Oxide | CaO | 0.01402 | 8.1467-10 |
| 17 | Cinnamic Aldehyde | $\mathrm{C}_{9} \mathrm{H}_{8}-\mathrm{O}$ | 0.03302 | 8.5188-10 |
| 18 | Citral | $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}$ | 0.07600 | 8.8808-10 |
| 19 | Citric Acid, crystallized | $\mathrm{H}_{3} \mathrm{O}_{6} \mathrm{H}_{6} \mathrm{O}_{7}+\mathrm{H}_{2} \mathrm{O}$ | 0.03502 | 8.5443-10 |
| 20 | Formaldehyde | $\mathrm{CH}_{2} \mathrm{O}$ | 0.01501 | 8.1762-10 |
| 21 | Hydrated Chloral | $\mathrm{C}_{2} \mathrm{HOCl}_{3}+\mathrm{H}_{2} \mathrm{O}$ | 0.08270 | 8.9175-10 |
| 22 | Hydrobromic Acid | HBr | 0.04047 | 8.6070-10 |
| 23 | Hydrochloric Acid | HCl | 0.01824 | 8.2610-10 |
| 24 | Hydriodic Acid | HI | 0.06397 | 8.8060-10 |
| 25 | Hypophosphorous Acid | $\mathrm{HPH}_{2} \mathrm{O}_{2}$ | 0.03303 | 8.5189-10 |
| 26 | Lactic Acid | $\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{8}$ | 0.04503 | 8.6535-10 |
| 27 | Lead Acetate, crystallized | $\mathrm{Pb}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}+3 \mathrm{H}_{2} \mathrm{O}$ | 0.09480 | 8.9768-10 |
| 28 | Lead Subacetate, assumed as | $\mathrm{PB}_{2} \mathrm{O}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}$ | 0.06853 | 8.8359-10 |
| 29 | Lithium Carbonate | $\mathrm{Li}_{2} \mathrm{CO}_{3}$ | 0.01847 | 8.2664-10 |
| 30 | Lithium Citrate, anhydrous | $\mathrm{Li}_{8} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}$ | 0.03498 | 8.5438-10 |
| 31 | Lithium Citrate, crystallized | $\mathrm{Li}_{8} \mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{7}+4 \mathrm{H}_{2} \mathrm{O}$ | 0.04699 | 8.6720-10 |
| 32 | Lithium Salicylate | $\mathrm{LiC}_{7} \mathrm{H}_{5} \mathrm{O}_{3}$ | 0.07199 | 8.8572-10 |
| 33 | Magnesium Carbonate | $\left(\mathrm{MgCO}_{8}\right)_{4} \mathrm{Mg}(\mathrm{OH})_{2}+5 \mathrm{H}_{2} \mathrm{O}$ | 0.02429 | 8.3854-10 |
| 34 | Magnesium Hydroxide | $\mathrm{Mg}(\mathrm{OH})_{2}$ | 0.01480 | 8.1703-10 |
| 35 | Magnesium Oxide | MgO | 0.01008 | 8.0033-10 |
| 36 | Menthol | $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{O}$ | 0.07808 | 8.8925-10 |
| 37 | Menthyl Acetate | $\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{C}_{2} \mathrm{H}_{8} \mathrm{O}_{2}$ | 0.09909 | 8.9959-10 |
| 38 | Methyl Salicylate | $\mathrm{CH}_{3} \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{8}$ | 0.07603 | $8.8810-10$ |
| 39 | Nitric Acid | $\mathrm{HNO}_{3}$ | 0.03151 | 8.4984-10 |
| 40 | Oxalic Acid | $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+{ }_{2} \mathrm{H}_{2} \mathrm{O}$ | 0.03153 | 8.4987-10 |
| 41 | - Paraformaldehyde | $\left(\mathrm{CH}_{2} \mathrm{O}\right)_{8}$ | 0.01501 | 8.1764-10 |
| 42 | Phosphoric Acid | $\mathrm{H}_{3} \mathrm{PO}_{4}$ to form $\mathrm{K}_{2} \mathrm{HPO}_{4}$ <br> P. T. S. | 0.02452 | 8.3896-10 |
| 43 | Potassium Acetate | KC2 $\mathrm{H}_{8} \mathrm{O}_{2}$ | 0.04906 | 8.6907-10 |
| 44 | Potassium Bicarbonate | $\mathrm{KHCO}_{3}$ | 0.05006 | 8.6995-10 |
| 45 | Potassium Bitartrate | $\mathrm{KHC}_{4} \mathrm{H}_{4} \mathrm{O}_{6}$ | 0.09407 | 8.9734-10 |
| 46 | Potassium Carbonate | $\mathrm{K}_{2} \mathrm{CO}_{3}$ | 0.03455 | 8.5384-10 |
| 47 | Potassium Citrate, anhydrous | $\mathrm{K}_{8} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}$ | 0.05106 | $8.708 \mathrm{I}-10$ |
| 48 | Potassium Citrate, crystallized | $\mathrm{K}_{3} \mathrm{C}_{6} \mathrm{H}_{7} \mathrm{O}+\mathrm{H}_{2} \mathrm{O}$ | 0.05406 | 8.7329-10 |
| 49 | Potassium Hydroxide | KOH | 0.02806 | 8.448 I -10 |
| 50 | Pot. \& Sod. Tartrate, anhydrous | $\mathrm{KNaC}_{4} \mathrm{H}_{4} \mathrm{O}_{6}$ | 0.05253 | 8.7204-10 |
| 51 | Pot. \& Sod. Tartrate, crystallized | $\mathrm{KNaC}_{4} \mathrm{H}_{4} \mathrm{O}_{6}+{ }_{4} \mathrm{H}_{2} \mathrm{O}$ | 0.07055 | 8.8485-10 |
| 52 | Santalol | $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}$ | - IIIII | 9.0457-10 |
| 53 | Sodium Acetate, anhydrous | $\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ | 0.04101 | 8.6129-10 |

## logarithmic equtvalents (Continued).

Chemical.
Sodium Acetate, crystallized
Sodium Benzoate
Sodium Bitartrate
Sodium Bicarbonate
Sodium Borate, anhydrous
Sodium Borate, crystallized
Sodium Cacodylate, anhydrous
Sodium Carbonate, anhydrous
Sodium Carbonate, monohydrated
Sodium Citrate, anhydrous
Sodium Citrate, crystallized
Sodium Glycerophosphate
Sodium Hydroxide
Sodium Salicylate
Sodium Tartrate, neutral
Strontium Salicylate, anhydrous
Strontium Salicylate, crystallized
Sulphuric Acid
Sulphuric Anhydride
Tartaric Acid, crystallized
Trichloracetic Acid
Zinc Oxide

## Chemical.

## Acetone

Aconite ether soluble alkaloids
Aconitine
Allyl-iso-thiocyanate
Ammonium Gas
Ammonium Benzoate
Ammonium Bromide
Ammonium Chloride
Ammonium Iodide
Ammonium Salicylate
Antimony and Potassium Tartrate, crystallized
Arsenic, in arsenous compounds
Arsenic Iodide
Arsenic Trioxide (Arsenous Acid)
Arsenous Iodide
Atropine
Barium Hydroxide
Benzoic Acid
Betaeucaine Hydrochloride
Bromine
Brucine
Calcium Bromide, anhydrous
Calcium Bromide, crystallized
Calcium Carbonate
Calcium Chloride, anhydrous
Calcium Chloride
Calcium Hydroxide
Calcium Hypophosphite
Calcium Oxide

Formula.
$\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+3 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{NaC}_{7} \mathrm{H}_{6} \mathrm{O}_{2}$
$\mathrm{NaHC}_{4} \mathrm{H}_{4} \mathrm{O}_{6}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{NaHCO}_{3}$
$\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}$
$\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}+1 \mathrm{IOH}_{2} \mathrm{O}$
$\mathrm{Na}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{AsO}_{2}$
$\mathrm{Na}_{2} \mathrm{CO}_{3}$
$\mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{Na}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}$
$\mathrm{Na}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}+2 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{Na}_{2} \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{PO}_{6}$
NaOH
$\mathrm{NaC}_{7} \mathrm{H}_{5} \mathrm{O}_{3}$
$\mathrm{Na}_{2} \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{6}+2 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{Sr}\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{3}\right)$
$\mathrm{Sr}\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{8}\right)+2 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{H}_{2} \mathrm{SO}_{4}$
$\mathrm{SO}_{8}$
$\mathrm{H}_{2} \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{6}$
$\mathrm{CCl}_{3} \mathrm{COOH}$
ZnO

| Formula. | .N/10 Equivalent Logarithm. |  |
| :---: | :---: | :---: |
|  | 0.0009675 | 7.9857-10 |
|  | 0.0645 | 8.8096-10 |
| $\mathrm{C}_{44} \mathrm{H}_{4} \mathrm{O}_{11} \mathrm{~N}$ | 0.06454 | 8.8099-10 |
| $\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{SCN}$ | 0.004956 | 7.6951-10 |
| $\mathrm{NH}_{3}$ | 0.0017033 | 7.2311-10 |
| $\mathrm{NH}_{4} \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}$ | 0.01391 | 8.1433-10 |
| $\mathrm{NH}_{4} \mathrm{Br}$ | 0.009796 | 7.9911 -10 |
| $\mathrm{NH}_{4} \mathrm{Cl}$ | 0.005350 | 7.7284-10 |
| $\mathrm{NH}_{4} \mathrm{I}$ | 0.014496 | 8.1614-10 |
| $\mathrm{NH}_{4} \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{3}$ | 0.015508 | 8.1906-10 |
| $\mathrm{K}(\mathrm{SbO}) \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{6}+1 / 2 \mathrm{H}_{2} \mathrm{O}$ | 0.016617 | 8.2206-10 |
| As | 0.003748 | 7.5737-10 |
| $\mathrm{AsI}_{3}$ ? $\mathrm{AsI}_{5}$ | 0.022786 | 8.3577-10 |
| $\mathrm{As}_{2} \mathrm{O}_{3}$ | 0.004948 | 7.6944-10 |
| $\mathrm{AsI}_{3}$ | 0.015191 | 8.1815-10 |
| $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{O}_{3} \mathrm{~N}$ | 0.028919 | 8.4612 -IO |
| $\mathrm{Ba}(\mathrm{OH})_{2}+8 \mathrm{H}_{2} \mathrm{O}$ | 0.015776 | 8.198 1 - 10 |
| $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{2}$ | 0.015776 | 8.1981-10 |
| $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{ON} . \mathrm{HCl}$ | 0.028365 | 8.4529-10 |
| Br | 0.007992 | 7.9026-10 |
| $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{~N}_{2}$ | 0.039423 | 8.5957-10 |
| $\mathrm{CaBr}_{2}$ | 0.0099955 | 7.9998-10 |
| $\mathrm{CaBr}_{2}+2 \mathrm{H}_{2} \mathrm{O}$ | 0.0011798 | 7.0719-10 |
| $\mathrm{CaCo}_{3}$ | 0.0050035 | 7.6993-10 |
| $\mathrm{CaCl}_{2}$ | 0.00555 | 7.7443-10 |
| $\mathrm{CaCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$ | 0.0073511 | 7.8664-10 |
| $\mathrm{Ca}(\mathrm{OH})_{2}$ | 0.037045 | 7.5687-10 |
| $\mathrm{Ca}\left(\mathrm{PH}_{2} \mathrm{O}_{2}\right)_{2}$ | 0.002836 | 7.4527-10 |
| CaO | 0.0028035 | 7.4478-10 |


| N/2 Equivalent Logarithm |  |
| :---: | :---: |
| 0.06804 | $8.8328-10$ |
| 0.07202 | $8.8574-10$ |
| 0.09503 | $8.9778-10$ |
| 0.04200 | $8.6232-10$ |
| 0.05050 | $8.7033-10$ |
| 0.09554 | $8.9802-10$ |
| 0.08000 | $8.9031-10$ |
| 0.02650 | $8.4232-10$ |
| 0.03100 | $8.4914-10$ |
| 0.04301 | $8.6336-10$ |
| 0.04901 | $8.6903-10$ |
| 0.10805 | $8.0336-10$ |
| 0.02000 | $8.3010-10$ |
| 0.08002 | $8.9032-10$ |
| 0.05752 | $8.7599-10$ |
| 0.09043 | $8.9563-10$ |
| 0.09943 | $8.9975-10$ |
| 0.02452 | $8.3896-10$ |
| 0.02002 | $8.3014-10$ |
| 0.03751 | $8.5741-10$ |
| 0.08170 | $8.9122-10$ |
| 0.02034 | $8.3083-10$ |

N/10 Equivalent Logarithm. $0.0009675 \quad 7.9857$ - 10 $0.06458 .8096-10$
0.064547 .8099
$0.0017033 \quad 7.2311-10$
$0.013918 .1433-10$
.00750 .911.
0.014496 8.1614-10
0.016617 8.2206-10
$0.003748 \quad 7.5737$ - 10
0.0227868 .3577 -1о
0.004948 7.6944-10
0.0289198 .4612 - 10
$0.0157768 .198 \mathrm{I}-10$

- 10
0.007992 7.9026-10
$0.039423 \quad 8.5957$-10
0.011
$0.0050035 \quad 7.6993-10$
7.7443-10
$0.037045 \quad 7.5687$-10
$0.0028035 \quad 7.4478$ - 10
logarithmic equivalents (Continued).

| No. | Chemical. | Formula. | N/10 Equivalent Logarithm. |  |
| :---: | :---: | :---: | :---: | :---: |
| 30 | Calcium Sulphide, crude | CaS | 0.003607 | 7.5571-10 |
| 31 | Cephaeline | $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{~N}$ | 0.023316 | 8.3678-10 |
| 32 | Chlorine | Cl | 0.003546 | 7.5497-10 |
| 33 | Chromium Trioxide | $\mathrm{CrO}_{8}$ | 0.003333 | 7.5228-10 |
| 34 | Cinchonidine | $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{ON}_{2}$ | 0.029420 | 8.4686-10 |
| 35 | Cinchonine | $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{ON}_{2}$ | 0.029420 | 8.4686-10 |
| 36 | Cocaine | $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{O}_{4} \mathrm{~N}$ | 0.030318 | 8.4817-10 |
| 37 | Coniine | $\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{~N}$ | 0.012715 | 8.1045-10 |
| 38 | Copper Sulphate, anhydrous | $\mathrm{CuSO}_{4}$ | 0.015964 | 8.1045-10 |
| 39 | Copper Sulphate, crystallized | $\mathrm{CuSO}_{4}+5 \mathrm{H}_{2} \mathrm{O}$ | 0.024972 | 8.3974 -10 |
| 40 | Emetine | $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{O}_{2} \mathrm{~N}$ | 0.024718 | 8.3931 -10 |
| 41 | Ferrous Bromide | $\mathrm{FeBr}_{2}$ | 0.010784 | 8.0317 -10 |
| 42 | Ferrous Carbonate | $\mathrm{FeCO}_{3}$ | 0.011584 | 8.0637-10 |
| 43 | Ferrous Iodide | $\mathrm{FeI}_{2}$ | 0.015484 | 8.1897-10 |
| 44 | Ferrous Oxide | FeO | 0.007184 | 7.8563-10 |
| 45 | Ferrous Sulphate, anhydrous | $\mathrm{FeSO}_{4}$ | 0.015191 | 8.1815-10 |
| 46 | Ferrous Sulphate, crystallized | $\mathrm{FeSO}_{4}+7 \mathrm{H}_{2} \mathrm{O}$ | 0.027802 | 8.4440-10 |
| 47 | Hydrastine | $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{O}_{6} \mathrm{~N}$ | 0.038318 | $8.5834-10$ |
| 48 | Hydrochloric Acid | HCl | 0.003647 | 7.5619-10 |
| 49 | Hydrocyanic Acid, ist ppt. | HCN | 0.005404 | 7.7327-10 |
| 50 | Hydrocyanic Acid, $\mathrm{KCrO}_{4}$ | HCN | 0.002702 | $7.4316-10$ |
| 51 | Hydrobromic Acid | HBr | 0.008093 | 7.908 I -10 |
| 52 | Hydriodic Acid | HI | 0.012793 | 8.1069-10 |
| 53 | Hydrogen Dioxide | $\mathrm{H}_{2} \mathrm{O}_{2}$ | 0.0017008 | 7.2306-10 |
| 54 | Iodine | I | 0.012692 | 8.1035-10 |
| 55 | Iodine (Thymol Iodide) | I | 0.002115 | 7.3253-10 |
| 56 | Iron | Fe | 0.002792 | 7.4458-10 |
| 57 | Iron in Ferrous Compounds | Fe | 0.005584 | 7.7469-10 |
| 58 | Iron, in Ferric Compounds | Fe | 0.005584 | 7.7469-10 |
| 59 | Ipecac eth. | Ether soluble alkaloids | 0.0240 | $8.3802-10$ |
| 60 | Lactic Acid | $\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{3}$ | 0.009005 | 7.9544 -10 |
| 61 | Lead | Pb | 0.010355 | $8.0151-10$ |
| 62 | Lead Acetate | $\mathrm{Pb}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}$ | 0.016257 | $8.2110-10$ |
| 63 | Lead Oxide | PbO | 0.011155 | 8.0476-10 |
| 64 | Lead Peroxide | $\mathrm{PbO}_{2}$ | 0.011955 | 8.0778-10 |
| 65 | Lead Subacetate | $\mathrm{Pb}_{2} \mathrm{O}\left(\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{O}_{2}\right)_{2}$ | 0.013706 | 8.1370-10 |
| 66 | Lithium Bromide | LiBr | 0.008686 | 7.9388-10 |
| 67 | Lithium Chloride | LiCl | 0.004240 | 7.6274-10 |
| 68 | Manganese Dioxide | $\mathrm{MnO}_{2}$ | 0.0043465 | 7.6382-10 |
| 69 | Mercuric Iodide | $\mathrm{HgI}_{2}$ | 0.022722 | $8.3562-10$ |
| 70 | Mercuric Nitrate | $\mathrm{Hg}\left(\mathrm{NO}_{3}\right)_{2}$ | 0.016231 | 8.2103-10 |
| 71 | Mercury Oxide | HgO | 0.01083 | $8.0347-10$ |
| 72 | Mercurous Chloride | HgCl | 0.023606 | 8.3731 -10 |
| 73 | Mercurous Iodide | HgI | 0.032752 | 8.5152-10 |
| 74 | Mercury | Hg | 0.01003 | $8.0012-10$ |
| 75 | Mercury (in mercurous compounds) | Hg | 0.02006 | $8.3023-10$ |
| 76 | Morphine, anhydroas | $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{O}_{8} \mathrm{~N}$ | 0.028516 | $8.4551-10$ |
| 77 | Morphine, crystallized | $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{O}_{8} \mathrm{~N}+\mathrm{H}_{3} \mathrm{O}$ | 0.030318 | 8.4817 -10 |
| 78 | Mydriatic alkaloids, combined | Combined alkaloids | 0.02892 | 8.461 I -10 |
| 79 | Nux Vomica | Combined alkaloids | 0.0364 | $8.5611-10$ |
| 80 | Orcin | $\mathrm{C}_{7} \mathrm{H}_{6}(\mathrm{OH})_{2}$ | 0.002068 | 7.3156-10 |
| 81 | Oxalic Acid | $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+{ }_{2} \mathrm{H}_{2} \mathrm{O}$ | 0.0063025 | 7.7996-10 |
| 82 | Oxygen | 0 | 0.0008 | 6.9031-10 |

JOURNAL OF THE
logarithmic equtvalents (Continued).

| No. | Chemical. | Formula. |
| :---: | :---: | :---: |
| 83 | Phenol | $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$ |
| 84 | Phosphoric Acid | $\mathrm{H}_{3} \mathrm{PO}_{4}$ |
| 85 | Pilocarpine Physostigmine | $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{O}_{2} \mathrm{~N}_{3}$ |
| 86 | Pilocarpine | $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{~N}_{2}$ |
| 87 | Potassium Bitartrate | KHC4 $\mathrm{H}_{4} \mathrm{O}_{6}$ |
| 88 | Potassium Bromate | $\mathrm{KBrO}_{3}$ |
| 89 | Potassium Bromide | KBr |
| 90 | Potassium Chloride | KCl |
| 91 | Potassium Chlorate | $\mathrm{KClO}_{3}$ |
| 92 | Potassium Cyanide, ist ppt. | KCN |
| 93 | Potassium Dichromate | $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{2}$ |
| 94 | Pótassium Hydroxide | KOH |
| 95 | Potassium Hypophosphite | $\mathrm{KPH}_{2} \mathrm{O}_{2}$ |
| 96 | Potassium Iodide | KI |
| 97 | Potassium Nitrate | $\mathrm{KNO}_{3}$ |
| 98 | Potassium Permanganate | $\mathrm{KMnO}_{4}$ |
| 99 | Potassium Sulphite, crystallized | $\mathrm{K}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$ |
| 100 | Potassium Sulphocyanate | KCNS |
| 101 | Quinine, anhydrous | $\mathrm{C}_{20} \mathrm{H}_{44} \mathrm{O}_{2} \mathrm{~N}_{2}$ |
| 102 | Resorcinol | $\mathrm{C}_{6} \mathrm{H}_{5}(\mathrm{OH})_{2}$ |
| 103 | Salicylic Acid | $\mathrm{HC}_{6} \mathrm{H}_{5} \mathrm{O}_{3}$ |
| 104 | Silver | Ag |
| 105 | Silver Nitrate | $\mathrm{AgNO}_{3}$ |
| 106 | Silver Oxide | AgO |
| 107 | Sodium Arsenate, anhydrous | $\mathrm{Na}_{2} \mathrm{HAsO}_{4}$ |
| 108 | Sodium Arsenate, crystallized | $\mathrm{Na}_{2} \mathrm{HAsO}_{4}+7 \mathrm{H}_{2} \mathrm{O}$ |
| 109 | Sodium Bisulphite | $\mathrm{NaHSO}_{3}$ |
| 110 | Sodium Bromide | NaBr |
| 111 | Sodium Carbonate, anhydrous | $\mathrm{Na}_{2} \mathrm{CO}_{3}$ |
| 112 | Sodium Chloride | NaCl |
| 113 | Sodium Chlorate | $\mathrm{NaClO}_{3}$ |
| 114 | Sodium Cyanide, ist ppt. | NaCN |
| 115 | Sodium Hydroxide | NaOH |
| 116 | Sodium Hypophosphite | $\mathrm{NaPH}_{2} \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O}$ |
| 117 | Sodium Iodide | NaI |
| 118 | Sodium Nitrate | $\mathrm{NaNO}_{8}$ |
| 119 | Sodium Nitrite | $\mathrm{NaNO}_{2}$ |
| 120 | Sodium Oxalate | $\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ |
| 121 | Sodium Phenolsulphonate, anhydrous | $\mathrm{NaC}_{6} \mathrm{H}_{5} \mathrm{O}_{4} \mathrm{~S}$ |
| 122 | Sodium Phenolsulphonate, crystallized | $\mathrm{NaC}_{6} \mathrm{H}_{5} \mathrm{O}_{4} \mathrm{~S}+2 \mathrm{H}_{2} \mathrm{O}$ |
| 123 | Sodium Phosphate, anhydrous | $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ |
| 124 | Sodium Phosphate, crystallized | $\mathrm{Na}_{2} \mathrm{HPO}_{4}+12 \mathrm{H}_{2} \mathrm{O}$ |
| 125 | Sodium Sulphite | $\mathrm{Na}_{2} \mathrm{SO}_{3}$ |
| 126 | Sodium Thiosulphate, anhydrous | $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ |
| 127 | Sodium Thiosulphate, crystallized | $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+{ }_{5} \mathrm{H}_{2} \mathrm{O}$ |
| 128 | Strontium Bromide | $\mathrm{SrBr}_{2}+6 \mathrm{H}_{2} \mathrm{O}$ |
| 129 | Strontium Chloride | $\mathrm{SrCl}_{2}+6 \mathrm{H}_{2} \mathrm{O}$ |
| 130 | Strontium Iodide | $\mathrm{SrI}_{2}+6 \mathrm{H}_{2} \mathrm{O}$ |
| 131 | Strychnine | $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{~N}_{2}$ |
| 132 | Sulphuric Acid | $\mathrm{H}_{2} \mathrm{SO}_{4}$ |
| 133 | Sulphur Dioxide | $\mathrm{SO}_{2}$ |
| 134 | Zinc Chloride | $\mathbf{Z n C l}_{2}$ |
| 135 | Zinc Oxide | ZnO |

N/10 Equivalent Logarithm.

| 0.001568 | 7.1953 |
| :---: | :---: |
| 0.0032687 | 7.5144-10 |
| 0.027520 | 8.4396-10 |
| 0.020815 | $8.3185-10$ |
| 0.018814 | 8.2744-10 |
| 0.0027837 | 7.4446-10 |
| 0.011902 | 8.0755-10 |
| 0.007456 | 7.8726-10 |
| 0.0020427 | 7.3102-10 |
| 0.013022 | 8.1145 |
| 0.0049033 | 7.6905-10 |
| 0.005611 | 7.7491-10 |
| 0.003472 | 7.5406-10 |
| 0.016602 | $8.2201-10$ |
| 0.010111 | $8.0047-10$ |
| 0.0031606 | 7.4998-10 |
| 0.009715 | 7.9874-10 |
| 0.009718 | 7.9876-10 |
| 0.032421 | $8.5107-10$ |
| 0.001834 | 7.2634-10 |
| 0.013805 | 8.1402-10 |
| 0.010788 | 8.0331-10 |
| 0.016989 | 8.2227 -10 |
| 0.011588 | 8.0641 -10 |
| 0.0092985 | 7.9684-10 |
| 0.015604 | $8.1931-10$ |
| 0.005204 | 8.7163-10 |
| 0.010292 | 8.0123-10 |
| 0.00530 | 7.7243 -10 |
| 0.005846 | 7.7668 |
| 0.0017743 | $7.2490-10$ |
| 0.009802 | $7.9913-10$ |
| 0.004001 | $7.6022-10$ |
| 0.0035357 | $7.6022-10$ |
| 0.014992 | 8.1759 |
| 0.008501 | 7.9295 |
| 0.0034505 | 7.5379-10 |
| 0.0067 | 7.8261 |
| 0.004903 | 7.6905-10 |
| 0.0058035 | 7.7637-10 |
| 0.004735 | 7.6754-10 |
| 0.011941 | $8.760-10$ |
| 0.00634 | 7.8021 |
| 0.015814 | 8.1 |
| 0.024822 | 8.3949-10 |
| 0.017779 | 8.2500-10 |
| 0.013332 | 8.1249-10 |
| 0.022479 | 8.3517-10 |
| 0.033420 | $8.5240-10$ |
| 0.0049045 | 7.6906 |
| 0.0032035 | 7.5056 |
| 0.0068145 | 7.8334 |
| 0.0040685 | 7.6094 |

Logarithmic equivalents (Concluded).

| No. | Chemical. | Formula. | N/50 Equivale | et Logarithm. |
| :---: | :---: | :---: | :---: | :---: |
| 1 | Aconitine | $\mathrm{C}_{34} \mathrm{H}_{47} \mathrm{O}_{11} \mathrm{~N}$ | 0. 012097 | 8.1509-10 |
| 2 | Atropine | $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{O}_{3} \mathrm{~N}$ | 0.0057838 | 7.7622-10 |
| 3 | Cinchona | Combined alkaloids of | 0.0061841 | 7.7913-10 |
| 4 | Cinchonidine | $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{ON}_{2}$ | 0.005884 | 7.7697-10 |
| 5 | Cinchonine | $\mathrm{C}_{1} \mathrm{H}_{83} \mathrm{ON}_{2}$ | 0.005884 | 7.7697-10 |
| 6 | Cocaine | $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{ON}$ | 0.0060636 | 7.7828-10 |
| 7 | Coniine | $\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{~N}$ | 0. 002543 | 7.4053-10 |
| 8 | Hydrastine | $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{O}_{6} \mathrm{~N}$ | 0.0076636 | 7.8844-10 |
| 9 | Ipecac | Combined alkaloids | 0.0049034 | 7.6815-10 |
| 10 | Morphine, anhydrous | $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{~N}$ | 0.0057032 | 7.7561-10 |
| 11 | Morphines crystallized | $\mathrm{C}_{17} \mathrm{H}_{10} \mathrm{O}_{3} \mathrm{~N}+\mathrm{H}_{2} \mathrm{O}$ | 0.0060636 | 7.7828-10 |
| 12 | Physostigmine | $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{O}_{2} \mathrm{~N}_{3}$ | 0.005504 | 7.7407-10 |
| 13 | Pilocarpine | $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{~N}_{2}$ | 0.004163 | 7.6194-10 |
| 14 | Quinine | $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{~N}_{2}$ | 0.0062842 | 7.7983-10 |
| 15 | Strychnine | $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{~N}_{2}$ | 0.006684 | 7.8251-10 |
| 16 | Potassium Bitartrate | $\mathrm{KHC} 4_{4} \mathrm{H}_{4} \mathrm{O}_{6}$ | 0.0037628 | 7.5755-10 |
| 17 | Potassium Hydroxide | KOH | 0.0011222 | 7.0500-10 |
| 18 | Sodium Hydroxide | NaOH | 0.0008002 | 6.9032-10 |
| 19 | Sulphuric Acid | $\mathrm{H}_{2} \mathrm{SO}_{4}$ | 0.0009809 | 6.9916-10 |

Defartment of Pharmacy,
University of Nebraska.

## MEETING OF AMERICAN METRIC ASSOCIATION.

A metric meeting given by the New York Academy of Sciences and the American Metric Association was held at the American Museum of Natural History, New York, on Monday evening, November 4th.

The speakers were Dr. Robert Lowie, who presented the development of numbers and measurements from the times of primitive peoples to modern civilization, describing interestingly the early use of numbers and the mathematical notion in folk-lore; Mr. Howard Richards, Jr., who discussed the right usage of metric weights and measures; and Dr. Chester A. Reeds, who gave a geologist's estimation of the decimal method of computation in comparison with the systems used in America.

These papers were discussed by Dr. William Jay Schieffelin, Mr. Maximilian Toch, Mr. A. A. Cary, Dr. H. V. Arny and Mr. John Francis.


[^0]:    * Contributed to Section on Practical Pharmacy and Dispensing, A. Ph. A., Chicago meeting, 1918.

